

Hello, I’m looking for a
chocolate cake for a
friend’s birthday. It’s got
to be gluten-free.

User Requirements

No problem!

Specification

Time to figure this out!

Validation

Does this look good?

The cake looks
beautiful(!), but I just
learned that a vegan
friend is coming to
the party…

No problem! Let me
quickly edit the
recipe.

Let’s get to baking!

Implementation

This is perfect! Thank you!

Verification

You are welcome!

Does this meet your
expectations?

User Requirements

Specification

Validation

Implementation

Verification

Requirements Engineering

How do we use these fandangle specifications?

(van Kesteren and D. Denicola, 2006)

(Chiang, 2006)

[enters room]

“The use of natural language alone for specification
purposes is inadequate due to its lack of formality.” (Chiang, 2006)

[drops citation]

[refuses to elaborate further]

[leaves]

Formalizing Natural-Language
Specifications

How can natural language be formalized to make the process of
writing specifications for complex software easier?

Kyle Williams — June 2nd, 2023

The Gorr Specification Language
by Kyle Williams

(get it? al-gor-ithm…? I’ll get my coat.)

Gorr
The algorithm [[factorial]], with the
signature integer [[n]] returns
integer, does the following:

1. If either [[n]] is equal to 0 or [[
n]] is equal to 1,

1.1. Return 1.

2. Otherwise,

2.1. Return the multiplication of [[n
]] by call [[factorial]] arguments the
subtraction of 1 from [[n]].

def factorial(n: int) -> int:

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Python

0! = 1
1! = 1

2! = 2 ✕ (2 - 1)! = 2 ✕ 1 = 2
3! = 3 ✕ (3 - 1)! = 3 ✕ 2 ✕ 1 = 6

n! = n ✕ (n - 1)!

Gorr
The algorithm [[factorial]], with the
signature integer [[n]] returns integer,
does the following:

1. If either [[n]] is equal to 0 or [[n]]
is equal to 1,

1.1. Return 1.

2. Otherwise,

2.1. Return the multiplication of [[n]] by
call [[factorial]] arguments the
subtraction of 1 from [[n]].

def factorial(n: int) -> int:

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Python

LEGEND: algorithm name type signature
arguments return type

Gorr
The algorithm [[factorial]], with the
signature integer [[n]] returns integer,
does the following:

1. If either [[n]] is equal to 0 or [[n
]] is equal to 1,

1.1. Return 1.

2. Otherwise,

2.1. Return the multiplication of [[n]] by
call [[factorial]] arguments the
subtraction of 1 from [[n]].

def factorial(n: int) -> int:

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Python

LEGEND: body if statement otherwise statement
if block otherwise block condition

Gorr
The algorithm [[factorial]], with the
signature integer [[n]] returns integer,
does the following:

1. If either [[n]] is equal to 0 or [[n
]] is equal to 1,

1.1. Return 1.

2. Otherwise,

2.1. Return the multiplication of [[n]] by
call [[factorial]] arguments the
subtraction of 1 from [[n]].

def factorial(n: int) -> int:

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Python

LEGEND: body if statement otherwise statement
if block otherwise block condition

In Gorr, if [[n]] is equal to 1:
either [[n]] is equal to 0 or[[n]] is equal to 1

evaluates to
either false or true,

which then evaluates to
true,

meaning the if block will be executed!

In Python, if n == 1:
n == 0 or n == 1

evaluates to
False or True,

which then evaluates to
True.

Gorr
The algorithm [[factorial]], with the
signature integer [[n]] returns integer,
does the following:

1. If either [[n]] is equal to 0 or [[n
]] is equal to 1,

1.1. Return 1.

2. Otherwise,

2.1. Return the multiplication of [[n]] by
call [[factorial]] arguments the
subtraction of 1 from [[n]].

def factorial(n: int) -> int:

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Python

LEGEND: body if statement otherwise statement
if block otherwise block condition

Return the multiplication of [[n]] by call [[factorial]]
arguments the subtraction of 1 from [[n]].

Gorr
The algorithm [[factorial]], with the
signature integer [[n]] returns
integer, does the following:

1. If either [[n]] is equal to 0 or [[
n]] is equal to 1,

1.1. Return 1.

2. Otherwise,

2.1. Return the multiplication of [[n
]] by call [[factorial]] arguments the
subtraction of 1 from [[n]].

def factorial(n: int) -> int:

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

Python

The sentence
“Set [[a]] to true.”

can be parsed by the following rules:

⟨boolean⟩ → “true” | “false”;
⟨variable⟩ → “[[” ⟨space⟩? ⟨text⟩ ⟨space⟩? “]]”;
⟨variable assignment ⟩ → “Set” ⟨space⟩ ⟨variable⟩ ⟨space⟩ “to” ⟨space⟩ ⟨boolean⟩
⟨period⟩;

rule
rule name pattern

symbol

Natural Language
Specification

Computer Representation
of Specification

“you misspelled a variable here”
“you can’t pass an integer as a boolean here”

“running your specification”

Natural Language
Specification

Computer Representation
of Specification

“you misspelled a variable here”
“you can’t pass an integer as a boolean here”

“running your specification”

It is impossible for the phrase

“either true or false”
to be parsed as

“either [[true]] or [[false]]”
because the grammar says so.

Runthrough Complete!

How My Approach Addresses Previous Issues
with Natural Language

On Formalism and
Specifications

Bertrand Meyer
IEEE Software, January 1985

Noise
The presence in the text of an element that does not carry

information relevant to any feature of the problem.

Because Gorr is a subset of English limited
by its grammar, Gorr can only describe the

outline of an algorithm, nothing else.

Silence
The existence of a feature of the problem that is not

covered by any element of the text.

Gorr will not let you omit.

Over-specification
The presence in the text of an element that corresponds

not to a feature of the problem but to features of a
probable solution.

Some may perceive Gorr as too algorithmic,
but I believe that this approach to

specification writing is valid.

Contradiction
The presence in the text of two or more elements that
define a feature of the system in an incompatible way.

Gorr’s strictly typed nature

prevents contradictions.

The following statements

The integer [[meaning of life]] is 42.

Set [[meaning of life]] to false.

are invalid in Gorr.

Ambiguity
The presence in the text of two or more elements that
define a feature of the system in an incompatible way.

The grammar and description

of the language come together.

Forward References
The presence in the text of an element that uses features of

the problem not defined until later in the text.

The following statements

Set [[meaning of life]] to false.

The Boolean [[meaning of life]] is true.

are invalid in Gorr.

Wishful Thinking
The presence in the text of an element that defines a
feature of the problem in such a way that a candidate

solution cannot be realistically be validated with respect
to this feature.

You cannot escape the “sandbox”

of the Gorr language.

Why Natural Language?

This is cool and all, but, like,

It’s universal.

If This Is Possible, Why Does Everyone Say It
Isn’t?

We need to find just the right amount.

repeat with i = 1 to the number of card
fields
 hide field i
end repeat

set dialogReply to display dialog "Dialog
Text" ¬

default answer "Text Answer" ¬
hidden answer false ¬
buttons {"Skip", "Okay", "Cancel"} ¬
default button "Okay" ¬
cancel button "Skip" ¬
with title "Dialog Window Title" ¬
with icon note ¬
giving up after 15

SELECT *
 FROM Book
 WHERE price > 100.00
 ORDER BY title;

</slideshow>

<!-- Thank you for listening! -->

